R-cran-lazyeval - Disciplined approach to non-standard evaluation

Property Value
Distribution FreeBSD 12
Repository FreeBSD Ports Latest amd64
Package filename R-cran-lazyeval-0.2.2_1.txz
Package name R-cran-lazyeval
Package version 0.2.2
Package release 1
Package architecture amd64
Package type txz
Category math
Homepage https://cran.r-project.org/web/packages/lazyeval/
License GPLv3
Maintainer wen@FreeBSD.org
Download size 148.93 KB
Installed size 341.10 KB
A disciplined approach to non-standard evaluation.
WWW: https://cran.r-project.org/web/packages/lazyeval/


Package Version Architecture Repository
R-cran-lazyeval-0.2.2_1.txz 0.2.2 i386 FreeBSD Ports Latest
R-cran-lazyeval-0.2.2_1.txz 0.2.2 i386 FreeBSD Ports Quarterly
R-cran-lazyeval-0.2.2_1.txz 0.2.2 amd64 FreeBSD Ports Quarterly
R-cran-lazyeval - - -


Name Value
R = 3.6.1_1
gcc9 = 9.1.0_1
libR.so.3.6 -


Type URL
Mirror pkg.freebsd.org
Binary Package R-cran-lazyeval-0.2.2_1.txz
Source Package math/R-cran-lazyeval

Install Howto

Install R-cran-lazyeval txz package:

# pkg install R-cran-lazyeval

See Also

Package Description
R-cran-lifecycle-0.1.0.txz Manage the Life Cycle of your Package Functions
R-cran-lme4-1.1.21_1.txz Linear mixed-effects models using Eigen and S4
R-cran-lmtest-0.9.37_1.txz Testing Linear Regression Models
R-cran-lubridate-1.7.4_2.txz Make Dealing with Dates a Little Easier
R-cran-magic-1.5.9_2.txz Create and Investigate Magic Squares
R-cran-magrittr-1.5_3.txz Forward-Pipe Operator for R
R-cran-maptools-0.9.8.txz Tools for reading and handling spatial objects
R-cran-markdown-1.1.txz Markdown Rendering for R
R-cran-maxLik-1.3.6_1.txz Maximum Likelihood Estimation and Related Tools
R-cran-mcmc-0.9.6_1.txz Markov Chain Monte Carlo
R-cran-memisc- Provides an infrastructure for the management of survey data
R-cran-memoise-1.1.0_3.txz Memoise functions for R
R-cran-microbenchmark-1.4.2_4.txz Infrastructure to measure the execution time of R expressions
R-cran-mime-0.7_1.txz Map Filenames to MIME Types
R-cran-minqa-1.2.4_4.txz Derivative-free optimization algorithms by quadratic approximation